Why isn’t anything stipulated in the project with respect to other metals present in the ore deposit that will be mined, i.e. the three metal groups: heavy metals (uranium, copper, and lead), precious metals (gold, silver and platinum) and rare metals (wolfram, molybdenum, iridium, germanium), why only gold and silver are mentioned?

Gold and silver are the only metals that can be profitably mined in the area. RMGC commissioned a series of petrographic studies on samples and analytical test work that tested the concentration levels of 47 elements in Roșia Montană deposit. Except for gold and silver, the elements’ concentration falls, in most cases, below the average levels found in the Earth’s crust: U (1.43 ppm compared to 3.7 ppm), Th (6.07 ppm compared to 18 ppm), Sr (95.4 ppm compared to 125 ppm), Mo (1.27 ppm compared to 1.5 ppm), In (0.05 ppm compared to 0.1 ppm), Ge (0.21 ppm compared to 1.5 ppm), etc. These results were obtained through a number of research programs carried out between 1997 and 2006. Samples were collected from the existing underground galleries, the pit benches and the surface outcrops, and numerous other surface and underground drill holes. Each sample was individually examined for a great number of elements and, consequently, we feel confident in the extremely detailed results generated by our research programs.

It is also important to note that previous exploitations performed at Roșia Montană also failed to produce any of the other elements the questioner lists.
<table>
<thead>
<tr>
<th>Domain</th>
<th>GEOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMDD's item no. for the question which includes the observation identified by the RMGC internal code</td>
<td>7</td>
</tr>
<tr>
<td>MMDD's identification no. for the question which includes the observation identified by the RMGC internal code</td>
<td>Câmpeni, 26.07.2006</td>
</tr>
<tr>
<td>RMGC internal unique code</td>
<td>MMGA_0024</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>The questioner is opposing the accomplishment of the project and submits at the secretary a document that includes the following comments and remarks:</td>
</tr>
<tr>
<td>The real quantity of gold that will be extracted is 800t, not 300t as claimed by RMGC;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMGC has conducted the most extensive and detailed research program ever performed on a Romanian mine project and we stand behind our findings which was independently supervised and for which the contained resources are independently estimated.</td>
</tr>
<tr>
<td>The exploration activities conducted by RMGC between 1997 and 2006 show that there are 215 million tonnes of ore with an average content of 1.46 g/t gold and 6.9 g/t silver. This amounts to a total content of 314.11 t Au and 1480.36 t Ag. Roșia Montană’s resource deposit calculations are based upon a very elaborate research program, which included the collection of 191,320 samples collected from underground networks, surface outcrops and drill holes.</td>
</tr>
<tr>
<td>Each sampled meter has been tested for gold and silver. The database, containing over 400,000 assays, has been audited by independent experts – from Romania and abroad. One of the Romanian companies involved, Iromin SA, conducted three feasibility studies for the Roșia Montană project. These feasibility studies include the resource and deposit calculations. Both Iromin SA and the foreign auditors confirmed RMGC SA’s results. These resource and reserve calculations were submitted to the NAMR in order to be checked and homologated.</td>
</tr>
<tr>
<td>The resources and reserves which have been independently estimated and confirmed conform to Romanian Mining Law (85/2003), EU codes (Mineral Reporting Code, 2002) and International Law (NI 43-101). These results have all been independently verified and audited as is required under all the relevant laws.</td>
</tr>
</tbody>
</table>
Proposal

The quantity of silver that will be extracted is 4000t, not 1000t as claimed by RMGC;

The questioner’s figure of 4000 t of silver is not considered realistic. RMGC has conducted the most extensive and detailed research program ever performed on a Romanian mine project and we stand behind our findings which were independently supervised and for which the resources have been independently estimated.

The exploration activities conducted by RMGC between 1997 and 2006 show that there are 215 million tonnes of ore with an average content of 1.46 g/t gold and 6.9 g/t silver. This amounts to a total content of 314.11 t Au and 1480.36 t Ag. Roşia Montană’s resource deposit calculations are based upon a very elaborate research program, which included the collection of 191,320 samples collected from underground networks surface outcrops and drill holes.

Solution

Each sampled meter has been tested for gold and silver. The database, containing over 400,000 tests, has been audited by independent experts – from Romania and abroad. One of the Romanian companies involved, Ipromin SA, conducted three feasibility studies for the Roşia Montană project. These feasibility studies include the resource and deposit calculations. Both Ipromin SA and the foreign auditors confirmed RMGC SA’s results.

These resources and deposits calculations have been forwarded to the National resources Agency in order to be verified and homologated.

The resources and reserves which have been independently estimated and confirmed conform to Romanian Mining Law (85/2003), EU codes (Mineral Reporting Code, 2002) and International Law (NI 43-101). These results have all been independently verified and audited as is required under all the relevant laws.
The exploration activities conducted by RMGC between 1997 and 2006 show that there are 215 million tonnes of ore with an average content of 1.46 g/t gold and 6.9 g/t silver. This amounts to a total content of 314.11 t Au and 1480.36 t Ag. Roşia Montană’s resource deposit estimations are based upon a very elaborate research program, which included the collection of 191,320 samples collected from underground networks, surface outcrops, and drill holes. RMGC believes that we have conducted the most extensive and detailed research program ever performed on a Romanian mine project. This work was all independently supervised by qualified experts and all resource estimates have been independently estimated.

Each sampled meter has been tested for gold and silver. The database, containing over 400,000 assays, has been audited by independent experts – from Romania and abroad. One of the Romanian companies involved, Ipromin SA, conducted three feasibility studies for the Roşia Montană project. These feasibility studies include the resource and deposit calculations. Both Ipromin SA and the foreign auditors confirmed RMGC SA’s results.

Regarding the questioner’s concern about the international gold stock-exchange, there is a very strict mechanism and control (Law NI43-101), with very strict rules, for the reporting of information to the gold stock-exchange. All of these reports are produced by independent international companies which verify and validate all the data and information obtained by our company, before they are included in the reports. Moreover, the banks that will finance the project have audited the information and the resource and deposits estimates made by the independent qualified experts and the stock-exchange analysts and those active in the capital markets have visited Roşia Montană. There is no possibility for the gold stock-exchange to be over-stating and reporting over-estimates of the resources or deposits. The reports and estimates are done by qualified independent experts and not by the stock exchange.

The resources and reserves which have been independently confirmed conform to Romanian Mining Law (85/2003), EU codes (Mineral Reporting Code, 2002) and International Law (NI 43-101). These results have all been independently verified and audited as is required under all the relevant laws.
The resources estimate for the deposit has been performed by companies that belong to RMGC, namely Rom Aur SRL and Rom Analize SRL. Mr. Gary O’Connor is the sole administrator of these two companies and their main activity is resource estimation. Consequently, RMGC collects samples for assaying and RMGC is also estimating them, and that states a lot about the impartiality of this estimation.

S.C. Rom Aur S.R.L. was founded in 2005 and has a unique administrator, Mr. Gary O’Connor, who is not part of RMGC’s Administration Council. Moreover, RMGC holds no stock in S.C. Rom Aur S.R.L. Rom Aur solicited, from the Natural Agency for Mineral Resources, an exploration licence for a perimeter located in the Cluj district, which it received in July 2006. Therefore, this company could not have evaluated the resources at Roşia Montană because, as of 2005 when the company was founded, our resources calculations were already finalized. S.C. Rom Aur has produced no documentation for RMGC.

The RomAnalize company was only set up in 2005, after the completion of all resource estimation work at Roşia Montană for the sole purpose of the transfer and sale of the chemical testing and analysis facilities previously managed by Analabs and after their buy-out, SGS of Switzerland. RomAnalize was taken over, in July 2006, and is now run by ALS Chemex, Australia and up to now never performed any analytical work used in the resource estimation work at Roşia Montană.

The samples collected from Roşia Montană deposit were assayed by a laboratory with an independent management. During the assaying of these samples a checking program was implemented with internal and external checking procedures for the laboratory. Duplicate samples were send to two independent external labs from Australia and Canada for re-assaying and also standard samples, duplicate samples and blanks were included in the laboratory sample flowsheet. All the internal and external control checking proved the accuracy of the assays performed at the Gura Roşiei laboratory.
Proposal

The 350 million tones estimate refers to the estimated resources of the Roşia Montană deposit, but not the entire quantity of resources can be exploited in economically viable conditions. In order to obtain an efficient exploitation, it is necessary to produce an exploitation development study and a feasibility study (including the resource estimate) that determines which of the identified resources can be capitalized. These will become the exploitable resources and, specifically for the Roşia Montană deposit, they amount to 215 million tones, with an average content of 1.46 g/t Au and 6.9 g/t Ag and will be mined in the four proposed pits. The rest of the resources remain unexploited, as they are located in the extensions of the planned quarries or immobilized under the protection areas or under the protected areas established at Roşia Montană.

Solution

The resources and reserves which are 2 different classifications of mineralized rock (one with an economic mine plan and one which just states the amount of mineralized rock) have been independently confirmed to conform to Romanian Mining Law (85/2003), EU codes (Mineral Reporting Code, 2002) and International Law (NI 43-101). These results have all been independently verified and audited as is required under all the relevant laws.
Proposal

Why will the exploration program continue to be developed at a lower pace?

Solution

The research programs conducted between 1997 and 2006 have defined the Roşia Montană deposit and have led to estimates regarding the existence of sufficient resources for the commencement of this deposit’s exploitation. They will continue at a slower pace with the goal of further detailing the known areas.

The geological research program will continue at a slower pace into the exploitation period of the Roşia Montană mining project. The geological research program aims to continuously improve the geological model of the deposit, delimiting the mineralized areas from the sterile ones. In this respect, samples will be obtained and chemical testings will be performed in advance of the exploitation activities, for a more thorough control of the deposit’s contents of gold and silver. Moreover, geological research activities may be conducted after exploitation has began in the planned quarries’ extensions, in order to verify the extension of the mineralization in these areas. There will be also infill and grade control drilling in order to increase knowledge concerning the Roşia Montană deposit.
<table>
<thead>
<tr>
<th>Domain</th>
<th>GEOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMDD’s item no. for the question which includes the observation identified by the RMGC internal code</td>
<td>116</td>
</tr>
<tr>
<td>MMDD’s identification no. for the question which includes the observation identified by the RMGC internal code</td>
<td>Alba Iulia, 31.07.2006</td>
</tr>
<tr>
<td>RMGC internal unique code</td>
<td>MMGA_0268</td>
</tr>
</tbody>
</table>

Proposal

Is there an estimation of Rosia Montana deposit, and if yes, how much is mined and how much remains?

Solution

The exploration activities conducted by RMGC between 1997 and 2006 show that there are 350 million tonnes of rock (material) with an average grade of 1.3 g/t gold and 6 g/t silver which just states the total amount of mineralized rock. Based on an economic mine plan and pit design using these resources was estimated a reserve of 215 million tonnes of ore with an average grades of 1.46 g/t Au and 6.9 g/t Ag. This amounts to a total content of 314.11 t Au and 1480.36 t Ag. This represents the ore quantity to be mined and processed at Roşia Montană. The differences of 135 million tons of ore are located in the extensions of the designed pits, immobilized under the protection areas, or under the protected areas established at Roşia Montană.

Roşia Montană’s resource and reserves deposit estimations are based upon a very elaborate research program, which included the collection of 191,320 samples taken from underground networks surface outcrops and drill holes. RMGC believes that we have conducted the most extensive and detailed research program ever performed on a Romanian mine project. This program was independently supervised and all resource and reserve estimates have been independently estimated.

Each sampled metre has been tested for gold and silver. The database, containing over 400,000 tests, has been audited by independent experts – from Romania and abroad. One of the Romanian companies involved, Ipromin SA, conducted three feasibility studies for the Roşia Montană project. These feasibility studies include the resource and deposit calculations. Both Ipromin SA and the foreign auditors confirmed RMGC SA’s results.

The resources and reserves have been independently estimated and confirmed conform to Romanian Mining Law (85/2003), EU codes (Mineral Reporting Code, 2002) and International Law (NI 43-101). These results have all been independently verified and audited as is required under all the relevant laws.
Domain

GEOLOGY

MMDD's item no. for the question which includes the observation identified by the RMGC internal code

122

MMDD's identification no. for the question which includes the observation identified by the RMGC internal code

Alba Iulia, 31.07.2006

RMGC internal unique code

MMGA_0273

Proposal

The questioner reminds the fact that within the project are mentioned 300t of gold and 1200t silver and this is a real fortune. Comparing with what Romania holds in its treasury, this need to be carefully judged.

Solution

RMGC has conducted the most extensive and detailed research program ever performed on a Romanian mine project and we stand behind our findings.

The exploration activities conducted by RMGC between 1997 and 2006 show that there are 215 million tons of ore with an average content of 1.46 g/t gold and 6.9 g/t silver. This amounts to a total content of 314.11 t Au and 1480.36 t Ag. Roşia Montană’s resource deposit calculations are based upon a very elaborate research program, which included the collection of 191,320 samples taken from underground networks surface outcrops and drill holes.

Each sampled meter has been tested for gold and silver. The database, containing over 400,000 assays, has been audited by independent experts – from Romania and abroad. One of the Romanian companies involved, Ipromin SA, conducted three feasibility studies for the Roşia Montană project. These feasibility studies include the resource and deposit calculations. Both Ipromin SA and the foreign auditors confirmed RMGC SA’s results.

It should be mentioned that Roşia Montană is just one of the Romania’s gold deposits, and the Romanian Government holds 20% of RMGC shares and, besides its profit quota, it also benefits from fees, taxes and royalties.

Mining as with all industries was required to be undertaken as part of a functioning market economy, which was a pre-requisite to EU membership.
Proposal

How was the estimation method for the gold and silver reserves established? Will the pre-emption rights be observed – will the entire gold quantity be sold to the National Bank of Romania? If it isn’t sold at the market price, how can the company cover its expenses?

Roşia Montană’s reserves deposit estimation is based upon a very elaborate research program, which included the collection of 191,320 samples taken from underground networks, surface outcrops and drill holes. RMGC believes that we have conducted the most extensive and detailed research program ever performed on a Romanian mine project. This program was independently supervised.

Each sampled metre has been tested for gold and silver. The database, containing over 400,000 assays, has been audited by independent experts – from Romania and abroad. One of the Romanian companies involved, Ipromin SA, conducted three feasibility studies for the Roşia Montană project. These feasibility studies include the resource and deposit calculations. Both Ipromin SA and the foreign auditors confirmed RMGC SA’s results.

The exploration activities conducted by RMGC between 1997 and 2006 show that there are 215 million tons of ore with an average content of 1.46 g/t gold and 6.9 g/t silver. This amounts to a total content of 314.11 t Au and 1480.36 t Ag.

The estimation method applied to the deposits at Roşia Montană has been internationally used, verified and validated at big deposits around the world. It is the “ordinary krigging” method of resource estimation and was performed by independent qualified experts and has been audited. Briefly, this method consists of the deposit dividing into blocks and estimation, based on complex geostatistics methods and using specialized computer software, of the average grades and of other parameters per each block using the data from exploration programs. About 29 parameters were estimated for each block. By summing up the respective blocks, the resource and the total deposit reserve are found out. The mine-able reserves are estimated from the resource model using “floating cones” and inputting the economic and recovery parameters including processing and mining costs for each block (data processing is done using powerful computer software) as well as considering the gold price on international markets.

Regarding the purchase of the gold by National Bank of Romania, please note that the Mining Law no. 85/2003, published in the Romanian Official Gazette, Section I, no. 197/27.03.2003, which represents the framework regulation in regard of the mining activities performed in Romania, contains no provision concerning a possible preference right of the National Bank of Romania in regard of the purchase of metals.

The provisions of the former Mining Law no. 61/1998, which provided the state’s preemption right for the purchase of the production of mineral resources obtained, irrespective of its nature, “for international prices and according to contractual terms” are no longer in force, as the Mining Law no. 61/1998 was integrally repealed by the Mining Law no. 85/2003, which does not contain such provisions.

The National Bank of Romania might purchase the gold mined in Roşia Montană at prices based on international market prices.
<table>
<thead>
<tr>
<th>Domain</th>
<th>GEOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposal</td>
<td>47 new elements have been discovered after conducting surveys and adequate assays. Among those, rare earths have also been discovered; are these lanthanides? If so, the titleholder isn’t he interested in the additional income that will be provided by the development of these rare earths, taking into account their major importance within atomic industry, computer science etc.</td>
</tr>
<tr>
<td>Solution</td>
<td>Gold and silver are the only metals that can be profitably mined in the area. RMGC commissioned a series of petrographic studies on minerals and performed analytical test work that tested the concentration levels of 47 elements in the Roșia Montană deposit. Excepting gold and silver, the elements’ concentration falls, in most cases, below or close to the average levels found in the Earth’s crust: U (1.43 ppm compared to 3.7 ppm), Th (6.07 ppm compared to 18 ppm), Sr (95.4 ppm compared to 125 ppm), Mo (1.27 ppm compared to 1.5 ppm), In (0.05 ppm compared to 0.1 ppm), Ge (0.21 ppm compared to 1.5 ppm), etc.</td>
</tr>
<tr>
<td>No other minerals or elements were located or discovered in economic quantities.</td>
<td></td>
</tr>
</tbody>
</table>
In the Rosia Montana gold deposit, in addition to precious metals – gold and silver – there are other minerals, among which radioactive minerals that will have a disastrous impact on the environment. Through the development of the project everything will be destroyed, Roman galleries included.

There is no evidence to support concern about radioactive pollution.

At Roșița Montană, gold and silver are the only metal deposits present in sufficient concentrations to permit exploitation and capitalization. This is based on analytical test work at certified laboratories that tested the concentration level for 47 elements and as well as petrographic studies. The concentration of most elements falls below the earth’s average content for such elements as mentioned: U (1.43 ppm compared to 3.7 ppm), Th (6.07 ppm compared to 18 ppm), Sr (95.4 ppm compared to 125 ppm), Mo (1.27 ppm compared to 1.5 ppm), In (0.05 ppm compared to 0.1 ppm), and Ge (0.21 ppm compared to 1.5 ppm). These low values, below the earth’s average content, have no negative impact on environment, because they are normal values usually found in rocks.

These test results were obtained through comprehensive research programs conducted between 1997 and 2006, when samples were collected from the existing underground galleries, the open pit benches, the surface outcrop, and numerous surface and underground locations. The research program produced highly reliable and extremely detailed information about the Roșița Montană deposits.

Regarding the questioner’s concern about the Roman galleries we can inform you that the underground archeological research has started in 1999 and was performed by a French team that was coordinated by Dr. Béatrice Cauet, a specialist well-known in Europe for mining archeology (CNRS, France).

Based on the French team reports, the National Archaeology committee proposed and the Ministry Of Culture and Crafts issued the archaeological discharge certificate for the area where the specialists recomended this, or proposed in situ preservation for the next areas: Piatra Corbului, Păru Carpeni and Cătălina Monulești. In this last underground gallery, RMGC will organize an in situ underground museum and also will be built facsimiles of other ancient galleries from other areas of Roșița Montană. For this project the company will spend more than 10 milion euro.
<table>
<thead>
<tr>
<th>Domain</th>
<th>GEOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMDD’s item no. for the question which includes the observation identified by the RMGC internal code</td>
<td>196</td>
</tr>
<tr>
<td>MMDD’s identification no. for the question which includes the observation identified by the RMGC internal code</td>
<td>Cluj Napoca, 07.08.2006</td>
</tr>
<tr>
<td>RMGC internal unique code</td>
<td>MMGA_0383</td>
</tr>
</tbody>
</table>

Proposal

Currently, through the operation developed at Rosia Poieni and Rosia Montana pits, radioactive impacts can be noticed in the area, this fact is proven by the contamination of the agricultural products: apples rot in trees and fall before ripeness, cherries wrinkle till they are not good to eat, potatoes grow as big as nuts. Aries’s water is polluted therefore it is not suitable for fishing and swimming.

Solution

No radioactive deposits have been exploited at either Roşia Poieni or Roşia Montană and, at least in the case of Roşia Montană, there is no evidence to support concern about radioactive pollution. At Roşia Montană, gold and silver are the only metal deposits present in sufficient concentrations to permit exploitation and capitalization. This is based on analytical test work at certified laboratories that tested the concentration level for 47 elements and on petrographic studies. The concentration of such elements is below the natural average content of the earth, and falls within normal ranges as follows: U (1.43 ppm compared to 3.7 ppm), Th (6.07 ppm compared to 18 ppm), Sr (95.4 ppm compared to 125 ppm), Mo (1.27 ppm compared to 1.5 ppm), In (0.05 ppm compared to 0.1 ppm), and Ge (0.21 ppm compared to 1.5 ppm).

These test results were obtained through comprehensive research programs conducted between 1997 and 2006 when samples were collected from the existing underground galleries, the open pit benches, the surface outcrops, and numerous surface and underground drill holes. The research program produced highly reliable and extremely detailed information about the Roşia Montană deposits.

Regarding the questioner’s concern about the quality of agricultural products, Roşia Montană’s plants are affected – not by radioactivity – but by pollution resulting from 2000-years of mining with environmentally damaging techniques and without any ecological reconstruction. The pollution of the Arieş river has been mainly caused by the acidity and high heavy metals contents – problems that originate from the previous mining works. RMGC’s operation of a modern mine – in particular, of water treatment facilities to treat acid water before it flows into the hydrographic network – will significantly diminish the existing pollution.
| Proposal | Roşia Montană’s reserves deposit estimation is based upon a very elaborate research program, which included the collection of 191,320 samples taken from underground networks, surface outcrops and drill holes. RMGC believes that we have conducted the most extensive and detailed research program ever performed on a Romanian mine project. This program was independently supervised.

Each sampled metre has been tested for gold and silver. The database, containing over 400,000 assays, has been audited by independent experts – from Romania and abroad. One of the Romanian companies involved, Ipromin SA, conducted three feasibility studies for the Roşia Montană project. These feasibility studies include the resource and deposit calculations. Both Ipromin SA and the foreign auditors confirmed RMGC SA’s results.

The exploration activities conducted by RMGC between 1997 and 2006 show that there are 215 million tons of ore with an average content of 1.46 g/t gold and 6.9 g/t silver. This amounts to a total content of 314.11 t Au and 1480.36 t Ag.

The estimation method applied to the deposits at Roşia Montană has been internationally used, verified and validated at big deposits around the world. The method used was the “ordinary krigging” method which was conducted by independent experts. Briefly, this method consists of the deposit dividing into blocks and estimation, based on complex geostatistics methods and using specialized computer software, of the average grades and of other parameters per each block using the data from exploration programs. About 29 parameters were estimated for each block. By summing up the respective blocks, the resource and the total deposit reserve are found out. The mine-able reserves are estimated from the resources using using “floating cones” and inputting the economic and recovery parameters including processing and mining costs for each block (data processing is done using powerful computer software) as well as considering the gold price on international markets.

The resources and reserves have been independently confirmed conform to Romanian Mining Law (85/2003), EU codes (Mineral Reporting Code, 2002) and International Law (NI 43-101). These results have all been independently verified and audited.

During the research programs, there were performed over 1100 drill holes, their average depth did not exceed 300 m. In order to investigate the deep-level mineralization, RMGC performed underground drill holes from the underground level 714m which reached the 520m RL. This depth is the deepest to which drilling was performed.

<p>| Solution | |</p>
<table>
<thead>
<tr>
<th>Proposal</th>
<th>Why isn’t it made public the average gold grade from the industrial ore?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution</td>
<td>Ipromin SA’s 2006 feasibility study for the Roșia Montană deposit showed that there were estimated industrial reserves of 214.9 Mt with average contents of 1.462 g/t Au and 6.889 g/t Ag. Data on the average gold and silver contents are shown in Chapter 2 – Technological Processes of the EIA as well as in the Non-Technical Summary in EIA Report.</td>
</tr>
</tbody>
</table>
What is the gold grade of the tailings?

There are 2 types of waste resulted from the exploitation. The first type are the waste rocks resulted from the pits, with such a low gold grade that it is not possible to recover enough gold to pay for the overheads which consist of all the mining, processing, social, environmental, rehabilitation, and cultural costs of the project. This waste material will go to the waste dumps, will be used to backfill the Jig, Orlea and Cârnic pits and to build the Corna dam. The second type of waste will result from the processing plant after the gold will be recovered will have an average grade of 0.30 g/t Au, and will be stored in the Corna TMF. A number of alternatives have been investigated to increase the overall recovery however none conform to BAT (“Best Available Techniques”) as defined by EU directive 96/61/EC.
Proposed solution:

The questioner considers that the historic pollution from Rosia Montana needs to be discussed very seriously and also the radioactivity in the area.

RMGC commissioned studies to examine historic pollution and to test for the presence of radioactive elements.

Through extensive scientific research, RMGC has charted existing environmental conditions. We have also extensively tested deposits for the presence of radioactive elements and found none in abnormal concentrations.

Several studies regarding initial conditions were conducted between 1999 and 2006. All of them are included in the EIA (see Volumes 1 – 6). These studies characterized and analyzed, using scientific information, environmental factors, cultural heritage and the population’s health. Nine of the eleven studies directly examined initial conditions and the quality of the environmental factors in the project’s area of influence and in the neighboring areas. For example, one study focused on water quality. Beginning in 1999, samples were collected from over 500 locations including surface waters, underground waters, sources, fountains, mine waters, and potentially acid spills on the old waste rock stockpiles. Following the initial campaign, long-term monitoring points have been established to gauge water quality and to monitor the flow. A database has been formed that currently contains over 78,000 entries for the 6 years of monitoring. Similar studies were conducted to measure the initial conditions of the area’s air, soil, meteorological conditions, sediment contamination, and biodiversity. We believe that, from this point of view, the Roşia Montană project has been scientifically investigated on a level of detail never before achieved by any other project developed in Romania.

At Roşia Montană, there is no evidence to support concern about radioactive pollution. Analytical test work studies have tested site samples for 47 elements. Excepting gold and silver, the concentration of all elements is lower than the average concentration of these elements on earth as follows: U (1.43 ppm compared to 3.7 ppm), Th (6.07 ppm compared to 18 ppm), Sr (95.4 ppm compared to 125 ppm), Mo (1.27 ppm compared to 1.5 ppm), In (0.05 ppm compared to 0.1 ppm), and Ge (0.21 ppm compared to 1.5 ppm). These test results were obtained through comprehensive research programs conducted between 1997 and 2006. Samples were collected from the existing underground galleries, the open pit benches, the surface outcrops, and numerous surface and underground drill holes. The research program produced highly reliable and extremely detailed information about the Roşia Montană deposits.
<table>
<thead>
<tr>
<th>Domain</th>
<th>GEOLOGY</th>
</tr>
</thead>
</table>

MMDD's item no. for the question which includes the observation identified by the RMGC internal code	232
MMDD's identification no. for the question which includes the observation identified by the RMGC internal code	Cluj Napoca, 07.08.2006
RMGC internal unique code	MMGA_0470

<table>
<thead>
<tr>
<th>Proposal</th>
<th>What happens with the thorium, what is it with radioactive pollution? Which will it be the regime of this substance? It is a strategic substance and it is not mentioned within the impact study.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution</td>
<td>At Roşia Montană, gold and silver are the only metal deposits present in sufficient concentrations to permit exploitation and capitalization. This is based on analytical test work at certified laboratories that tested the concentration level for 47 elements and on petrographic studies. The concentration of all such elements is lower than the average content of the earth: Th (6.07 ppm compared to 18 ppm), U (1.43 ppm compared to 3.7 ppm), Sr (95.4 ppm compared to 125 ppm), Mo (1.27 ppm compared to 1.5 ppm), In (0.05 ppm compared to 0.1 ppm), and Ge (0.21 ppm compared to 1.5 ppm). There is no evidence to support concern about radioactive pollution. These test results were obtained through comprehensive research programs conducted between 1997 and 2006, when samples were collected from the existing underground galleries, the quarry steps, the surface outcrops, and numerous surface and underground locations. The research program produced highly reliable and extremely detailed information about the Roşia Montană deposits.</td>
</tr>
</tbody>
</table>
Proposal

The questioner makes the following comments and observations and asks the following questions: there are tens of other rare minerals in Rosia Montana, apart from gold and silver, but no one pays them any attention. Rosia Montana has a great heritage, but the gold has been a source of pains for its inhabitants since the Antiquity.

Solution

Gold and silver are the only metals that can be profitably mined in the area; however, RMGC’s mine will bring environmental improvement and economic opportunities. The town, history and culture of Roşia Montană has been founded on the mining of gold.

RMGC commissioned a series of analytical testwork studies that tested the concentration levels of 47 elements in deposits from Roşia Montană. Excepting gold and silver, the elements' concentration is lower, in most cases, than the average levels found in the Earth’s crust: U (1.43 ppm compared to 3.7 ppm), Th (6.07 ppm compared to 18 ppm), Sr (95.4 ppm compared to 125 ppm), Mo (1.27 ppm compared to 1.5 ppm), In (0.05 ppm compared to 0.1 ppm), Ge (0.21 ppm compared to 1.5 ppm), etc.

These results were obtained through vast research programs carried out between 1997 and 2006. Samples were collected from the existing underground galleries, the open pit benches and the surface outcrops, and numerous other surface and underground drill holes. Each sample was individually examined for a great number of elements and, consequently, we feel confident in the extremely detailed results generated by our research programs.

Given the current environmental and economic problems in Roşia Montană, the questioner’s concern about gold mining bringing “great trouble” to the area is understandable. However, unlike previous mine operators – both ancient and more recent – RMGC is committed to improving the area’s environment. The operation of a modern mine – in particular, of the water treatment facility – will remediate historic pollution. At the end of our mine’s life, we will rehabilitate the land to the greatest extent possible (see RMGC’s *Mine Closure and Rehabilitation Management Plan* in the EIA). Furthermore, the new mine will create 600 direct and 6,000 indirect jobs as well as bring US $2.5 billion in investment into the country – these opportunities will help alleviate the economic hardships that have long plagued the region.
The questioner considers that by selling the precious metals obtained from the ore mined with the drilling equipment from the deposit in Rosia Montana, the company Gold Corporation has recovered all the expenses made so far with the documentation process, including the additional costs. The latter refer also to the value of the geological, mine surveys and mining documentations taken by the company from the Rosia Montana mine operation.

RMGC has not capitalized on any of the gold or silver resources removed from Roşia Montană, and the company has not yet recovered any costs. The drilling samples taken from the Roşia Montană site have been used in scientific analysis aimed at determining the amount of gold and silver that could be mined and marketed in the future. The gold and silver contained in these samples has not been removed and, in any event, the market value of these minerals would fall far short of enabling RMGC to recover our US $35 million investment in exploration programs.

The geological exploration is based upon drill-holes taken in the deposit area that allow the creation of a contour of the mineralized areas and give the most precise knowledge possible about the gold and silver content. For the diamond drilling the core diameter is 4.7 or 6.3 cm and a Reverse Circulation (RC) drill hole is about 11 cm in diameter and the maximum drilling depth is 300 m. Each drill hole sampled very metre, either by halving the core sample’s diameter, or by obtaining a 3 – 4 kg sample by splitting the material (through a Jones Riffle splitter) resulting from an RC drill hole. The material obtained after the collection of these samples is being kept as follows: the core trays with the core sample halves are kept in storage as witness samples, and the material obtained after an RC drill-holes is being kept in plastic bags, in the so-called “bag farm”. The collected samples are sent to the laboratory where they are grinded and then tested for gold and silver. The test itself requires cca 50 grams and the rest of the sample is kept as a whitness sample. The results of all these tests are introduced in a database, which is used to generate calculations of the deposit’s content. As previously stated, RMGC has not yet recovered any quantity of gold suitable for capitalization. However, mathematical calculations show that one drill-hole produces cca. 1000 kg (one ton) of ore. The average content of the Roşia Montană deposit is 1.46 g/t and, therefore, by apllying the recovery quoefficient of 0.8, we can obtain cca. 1.2 g of gold per drill-hole. The company has made 1100 drill-holes during the performance of the geological research programs, and even if 1320 grams of gold had been recovered from all these drill-holes, capitalization of that gold would never have covered all the costs related to the research programs (including the geological documentation purchased from the National Agency for Mineral Resources.). RMGC has already invested more than 35 million US dollars.
Proposal

The questioner wants to know whether the geological exploration continues in the area and whether, besides the deposit already identified, there is the possibility to identify another deposit, so that the mining operations may be extended beyond the initial term of 14-17 years.

Solution

The Evaluation Report on Environmental Impact describes the reserves that will be mined as a part of the Roşia Montană project. Any extension would require a new request for a new environmental permit and a new EIA evaluation process. Moreover, additional reserves require new reserves homologation from the National Agency for Mineral Resources and a new development plan for exploitation. There is a good possibility that more ore resources could exist at Roşia Montană, but additional research programs are needed. This research will require a permit issued by the National Agency for Mineral Resources.

Geological research will continue during the exploitation stage but at a lower speed, in order to continually improve the geological model that shows the difference between areas with resources and the areas with “waste rocks.”
Domain: GEOLOGY

MMDD's item no. for the question which includes the observation identified by the RMGC internal code: 376

MMDD's identification no. for the question which includes the observation identified by the RMGC internal code: București, 21.08.2006

RMGC internal unique code: MMGA_0768

Proposal: The questioner makes the following comments: Some clerics have been informed from certain unconventional information sources that the soil of Rosia Montana bears only traces of a significant gold deposit that used to exist here in ancient times, and that all this fuss is made for the international gold stock exchange. The company claims this is the largest deposit in the world. Maybe there is nothing in the soil of Rosia Montana.

Solution: The exploration activities conducted by RMGC between 1997 and 2006 has been shown by independent experts that there are 215 million tonnes of ore with an average content of 1.46 g/t gold and 6.9 g/t silver. This amounts to a total content of 314.11 t Au and 1480.36 t Ag. Roșia Montană's resource deposit estimation is based upon a very elaborate research program, which included the collection of 191,320 samples taken from underground networks from surface and from drill holes. RMGC believes that we have conducted the most extensive and detailed research program ever performed on a Romanian mine project. Independent qualified personnel supervised the entire program and validated the data used in the resource estimations.

Each sampled metre has been tested for gold and silver. The database, containing over 400,000 assays, has been audited by independent experts - from Romania and abroad. One of the Romanian companies involved, Ipromin SA, conducted three feasibility studies for the Roșia Montană project. These feasibility studies include the resource and deposit calculations. Both Ipromin SA and the foreign auditors confirmed RMGC SA's results.

The resources and reserves which have been independently estimated and confirmed conform to Romanian Mining Law (85/2003), EU codes (Mineral Reporting Code, 2002) and International Law (NI 43-101). These results have all been independently verified and audited.

Regarding the questioner’s concern about the international gold stock-exchange, there is a mechanism (Law NI 43-101), with very strict rules, for the reporting of information to the gold stock-exchange. All technical reports are produced by independent qualified persons from international companies which audit, verify and validate all the data and information obtained by our company, before they are included in the reports. Moreover, potential financial organizations for funding the development of the project have audited the information and the resource and deposits estimates made by RMGC’s independent experts and confirmed the validity of the resource and reserve.

The Roșia Montană gold deposit is not the largest gold deposit in the world and the company has never claimed this. The largest gold deposit in the world is the Grasberg Deposit in Indonesia which is ten times the size of the Roșia Montană deposit, which by comparison is relatively small. The Roșia Montană gold deposit is thought to be the largest in Europe.
The questioner wants to know if the Government has verified the company’s creditworthiness and if the Mine Law stipulates that the Romanian government has the obligation to employ a neutral company to conduct geological surveys in parallel with RMGC, to verify whether the deposits identified by the company actually exist (the questioner believes these deposits are highly questionable, because when ROSIAMIN still existed, the deposits amounted to 30 million – 30 tons of gold, while RMGC claims that they amount to 300 million tons, 320-350 tons of gold).

RMGC has conducted the most extensive and detailed research program ever performed on a Romanian mine project and we stand behind our findings.

The resources which have been independently confirmed conform to Romanian Mining Law (85/2003), EU codes (Code for the Reporting of Mineral exploration results, mineral resources and mineral reserves, October 2002), and International Law (NI 43-101). These results have all been independently verified, validated and audited as is required under all the relevant laws. Such independent work is neutral.

The exploration activities conducted by RMGC between 1997 and 2006 show that there are 215 million tons of ore with an average content of 1.46 g/t gold and 6.9 g/t silver. This amounts to a total content of 314.11 t Au and 1480.36 t Ag. Roşia Montană’s resource deposit stimations are based upon a very elaborate research program, which included the collection of 191,320 samples collected from underground networks, surface outcrops and drill holes. All sampling was independently supervised.

Each sampled meter has been tested for gold and silver. The database, containing over 400,000 assays, has been audited by independent experts – from Romania and abroad. One of the Romanian companies involved, Ipromin SA, conducted three feasibility studies for the Roşia Montană project. These feasibility studies include the resource and deposit calculations. Both Ipromin SA and the foreign auditors confirmed RMGC SA’s results.

The Mining Law has no stipulation related to a mandatory geological research program in parallel with RMGC’s own program however all resource estimation work has been performed by independent (neutral) qualified experts. However, norms dictate analyses of internal and external control for gold and silver proportions. RMGC conducted these analyses in Romania and commissioned two independent laboratories from Australia and Canada to perform identical tests. All the internal and external control checking proved the accuracy of the assays performed at the Gura Roşiei laboratory.

The reserves of 30 million tonnes calculated by Roşiamin represent the reserves calculated in 1984, after which no additional research programs have been conducted. RMGC increased the reserves to approx. 215 million tonnes, during the 1997 – 2006 research program.
| Proposal | At Roşia Montană, gold and silver are the only metal deposits present in sufficient concentrations to permit exploitation and capitalization. This is based on analytical test work at certified laboratories that tested the concentration level for 47 elements and on petrographic studies. The concentration of most elements falls within normal ranges and in the case of radio-active minerals the concentration is much lower than for earths average content as follows: Th (6.07 ppm average content at Roşia Montană compared to 18 ppm), U (1.43 ppm compared to 3.7 ppm), Th (6.07 ppm compared to 18 ppm), Sr (95.4 ppm compared to 125 ppm), Mo (1.27 ppm compared to 1.5 ppm), In (0.05 ppm compared to 0.1 ppm), and Ge (0.21 ppm compared to 1.5 ppm). There is no evidence to support concern about radioactive pollution. These low values, below the earths average content, have no negative impact on environment, because they are normal values usually found in rocks. Due to the low grades they cannot be mined and capitalized. Also, there are no evidence to support the concerns regarding radioactive pollution. These test results were obtained through comprehensive research programs conducted between 1997 and 2006. Samples were collected from the existing underground galleries, the open pit benches, the surface outcrops, and numerous surface and underground locations. The research program produced highly reliable and extremely detailed information about the Roşia Montană deposits. |
| Solution | |
Proposal

The questioner needs more information on the tectonics of the area surrounding the tailings management facility, namely geological sections that will reveal the faults, given the fact that this is a faulted, highly tectonized area.

Chapter 4.5 of the EIA report presents in detail the geology of the area, including drawings of the regional and local geology. For the tailings pond, cross sections of the tailing pond are presented in the Annexes of the Technological Processes section: Figure: 2.19 – Scheme of the tailing pond system and Figure 2.20 – Transversal cross section of the tailings pond dam and of the retention secondary dam. In the Tailings Facility Management Plan, Figure 5.2 presents the geological profile along the tailing pond. Drawings 03A; 03B; 07A; 07B and 09 show cross sections of the main and secondary tailing pond. Data from the geotechnical study is described in section 2.3 (page 28) within the same plan. All the plans and cross sections present the faults, geological structure and geotechnical conditions. Geotechnical data were collected from an extensive geotechnical research program conducted over the period 2000 – 2006.

Please see the geological profiles of Corna Valley that are attached to this answer.

In the geological profiles of the tailing pond projected for Corna Valley, there are no known faults that could endanger the safety of the pond.
The bedrock is theoretically impervious, but the parting planes of the marl shales show discontinuities, therefore the dam does not comply with the directives.

The description of Corna Valley, as presented by the inquirer overlooks the description of the most important units in the area, namely colluvium (clay) deposits (horizon), which has a low capacity of water retention and an average hydraulic conductivity of 1×10^{-6} cm/s.

The colluvium deposits generally present in the valleys, except the areas where the rock outcrops or areas where alluvium represents the surface material (on the bottom of valleys/small rivers). The colluvium on the tailings dam area (TMF) and on the secondary containment pond (SCS) is a mixture of real colluvium (a mass of soil and rocks deposited through water flowing and/or mass sliding) and bedrock or soil debris (namely, bedrock completely weathered supergen in the shape of soil or debris). The examined colluvium has depths between 3.0 and 10.5 m.

The first 10 to 40 centimetres (an average of 15 cm) are usually vegetable soil with organic substances with roots after which there is clay with variable quantities of sand and rock fragments at the size of gravel. The clay features and the small grained of the colluvium is a result of the shale from the bedrock spread around the whole area, except the intense mineralized area and the proposed exploitation area. The rock fragments from the clay matrix are usually sandstone and/or clay shale.

The colluvium is the favorite material for the tailings dam area, as determined based on the hydraulic tests, due to its reduced permeability 1×10^{-6} cm/s. This reduced permeability is the result of clay content with small grain. Also, this clay material will be compacted in order to reduce even more the permeability degree and in the area where the layers are thin, it will be added the colluvium from the processing plant and it will be compacted on the pond to increase the depth of the impermeable layer.

The argillaceous marl schists are made of black shales and interbedded sandstones with fine to medium grain size. Both the shales and the sandstones contain narrow fractures and cleavable surfaces or schistocity in most of the cases consolidated with calcite. On the upper part (up to 40 m in depth), these rocks are supergene weathered which leads both to destroying some of the cleavable surfaces as well as the filling with clay minerals resulted from the weathering shales.

An extensive drilling and test-work program including test pitting was performed over the period 2000 – 2006. Drilling was especially performed to test for any discontinuities associated with the foliation of associated with the schistosity and any other discontinuities along the Corna Valley axis. This is the first basic principle of a geotechnical investigation. The result of the tests indicates an area with hydraulic conductivity of 10^{-6} cm/s. This means that the schists and any other zones have a low permeability with a similar hydraulic conductivity as all other bedrock. All faults are thin, and have no significant dilatation and does not create a significant discontinuity.
<table>
<thead>
<tr>
<th>Proposal</th>
<th>The questioner made the following comments and observations and asked the following questions: Why did the grade drop? (annual reports released in 2002, 2003, 2004 show different dates, which differ from those released in 2005).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution</td>
<td>RMGC has conducted the most extensive and detailed research program ever performed on a Romanian mine project and we stand behind our findings.</td>
</tr>
<tr>
<td></td>
<td>The exploration activities conducted by RMGC between 1997 and 2006 which have all been independently supervised and validated and audited, show that there are 215 million tonnes of ore with an average content of 1.46 g/t gold and 6.9 g/t silver. This amounts to a total content of 314.11 t Au and 1480.36 t Ag.</td>
</tr>
<tr>
<td></td>
<td>Based on the exploration programs results and also to incorporate the project changes occurred during the time RMGC commissioned independent companies to periodically update the resources and reserves estimations. Comparing with the previous reserves estimations, the last estimation presented above, it has less with 3 millions tons of ore and 0.06 g/t less for Au average grade.</td>
</tr>
<tr>
<td></td>
<td>Some of the most important changes in the project were done in order to have a high degree of protection of the historical area of Roșia Montană, both pits Jig and Cârnic have been re-shaped as well as Orlea pit, for the protection of the historical buildings in its neighborhood and Carpeni protected area. The re-design process of the three pits reduced the total quantity of ore as well as the average contents of them.</td>
</tr>
<tr>
<td></td>
<td>Roșia Montană's resource deposit calculations are based upon a very elaborate research program, which included the collection of 191,320 samples taken from underground networks, surface outcrops and drill holes.</td>
</tr>
<tr>
<td></td>
<td>Each sampled meter has been tested for gold and silver. The database, containing over 400,000 assays, has been audited by independent experts – from Romania and abroad. One of the Romanian companies involved, Ipromin SA, conducted three feasibility studies for the Roșia Montană project. These feasibility studies include the resource and reserve calculations. Both Ipromin SA and the foreign auditors confirmed RMGC SA's results.</td>
</tr>
<tr>
<td></td>
<td>The resources and reserves which are 2 different classifications of mineralized rock (the first one establishes only the amount of mineralized rock while the second one takes into account an economic mine plan) have been independently confirmed conform to Romanian Mining Law (85/2003), EU codes (Mineral Reporting Code, 2002) and International Law (NI 43-101). These results have all been independently verified and audited as is required under all the relevant laws.</td>
</tr>
</tbody>
</table>
EIA does not present any map with the real geological and tectonic situation of the area. Chapter 4.5 of the Assessment Study of the EIA presents in detail the geology of the area, including drawings of the regional and local geology. For the tailing pond, cross sections of the tailing pond are presented in the Annexes at Technological Processes: Figure 2.19 – Scheme of the tailing pond system and Figure 2.20 – Transversal cross section of the tailing pond dam and of the retention secondary dam. In the Tailings Facility Management Plan, Figure 5.2 presents the geological profile along the tailing pond. Drawings 03A; 03B; 07A; 07B and 09 show cross sections of the main and secondary tailing pond. Data from the geotechnical study is described in section 2.3 (page 28) within the same plan. All the plans and cross sections present the faults, geological structure and geotechnical conditions.

Please see the geological profiles of Corna Valley that are attached to this answer. In the geological profiles of the tailing pond projected for Corna Valley, there are no known faults that could endanger the safety of the pond.
<table>
<thead>
<tr>
<th>Domain</th>
<th>GEOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMDD's item no. for the question which includes the observation identified by the RMGC internal code</td>
<td>3262</td>
</tr>
<tr>
<td>MMDD's identification no. for the question which includes the observation identified by the RMGC internal code</td>
<td>No. 111343/25.08.2006</td>
</tr>
<tr>
<td>RMGC internal unique code</td>
<td>MMGA_1447</td>
</tr>
</tbody>
</table>

Proposal

Within the gold ore deposit besides the precious metals there are radioactive metals which exposed will have disastrous effects on environment.

At Roşia Montană, gold and silver are the only metal deposits present in sufficient concentrations to permit exploitation and capitalization. RMGC commissioned a series of petrographic studies and analytical test work that tested the concentration levels of 47 elements in Roşia Montană deposit. The concentration of most elements falls below the average content of the earth as shown as follows. U (1.43 ppm compared to 3.7 ppm), Th (6.07 ppm compared to 18 ppm), Sr (95.4 ppm compared to 125 ppm), Mo (1.27 ppm compared to 1.5 ppm), In (0.05 ppm compared to 0.1 ppm), and Ge (0.21 ppm compared to 1.5 ppm). The low levels occur below the natural levels of the earth and have no negative impact on the environment as they are less than normal values, common, found all over the world.

Solution

There is no evidence to support concern about radioactive pollution.

These test results were obtained through comprehensive research programs conducted between 1997 and 2006. Samples were collected from the existing underground galleries, the open pit benches, the surface outcrops, and numerous surface and underground drill holes. The research program produced highly reliable and extremely detailed information about the Roşia Montană deposits. Analysis was performed at a certified and independent laboratory under independent supervision.
The questioner does not agree to the Rosia Montana mining project implementation and formulates the following remarks and comments:
The gold and silver grade is less than that one inscribed in bibliography and archives;

RMGC has conducted the most extensive and detailed research program ever performed on a Romanian mine project and we stand behind our findings. This was all independently supervised.

The exploration activities conducted by RMGC between 1997 and 2006 show that there are 215 million tonnes of ore with an average content of 1.46 g/t gold and 6.9 g/t silver. This amounts to a total content of 314.11 t Au and 1480.36 t Ag. Roşia Montana’s resource deposit calculations are based upon a very elaborate research program, which included the collection of 191,320 samples collected from underground networks surface outcrops and drill holes.

Each sampled metre has been tested for gold and silver. The database, containing over 400,000 tests, has been audited by independent experts – from Romania and abroad. One of the Romanian companies involved, Ipromin SA, conducted three feasibility studies for the Roşia Montană project. These feasibility studies include the resource and deposit calculations. Both Ipromin SA and the foreign auditors confirmed RMGC SA’s results.

The resources and reserves which have been independently estimated and confirmed conform to Romanian Mining Law (85/2003), EU codes (Mineral Reporting Code, 2002) and International Law (NI 43-101). These results have all been independently verified and audited as is required under all the relevant laws.

It is known that in previous years richer areas of the deposit were generally mined (veins) and it is likely that data mentioned in the bibliography and the archives refer to those areas which unfortunately have been exploited in the meantime. What now exists at Roşia Montană is generally a disseminated mineralization which means a high quantity of ore with low grades however.
<table>
<thead>
<tr>
<th>Domain</th>
<th>GEOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMDD’s item no. for the question which includes the observation identified by the RMGC internal code</td>
<td>48</td>
</tr>
<tr>
<td>MMDD’s identification no. for the question which includes the observation identified by the RMGC internal code</td>
<td>No. 115234/20.10.2006</td>
</tr>
<tr>
<td>RMGC internal unique code</td>
<td>MMGA_1491</td>
</tr>
</tbody>
</table>

Proposal

The content of other metals from ore (Cu, Pb, Zn, Bi, Te, Ge, In) was neglected;

Solution

RMGC has conducted the most extensive and detailed research program ever performed on a Romanian mine project and we stand behind our findings. This program has been independently supervised and monitored.

At Roșia Montană, gold and silver are the only metal deposits present in sufficient concentrations to permit exploitation and capitalization. The ore content in other metals was not neglected. They were analyzed but the results obtained do not show important enough concentrations to be extracted in profitable conditions. This is based on analytical test work at certified laboratories that tested the concentration level for 47 elements and on petrographic studies. Concerning the elements mentioned by the questioner, the concentrations were as follows: Cu 59 ppm, Pb 42 ppm, Zn 135 ppm, Bi 0.225 ppm, Se 1.35 ppm, Te 0.44 ppm, Ge 0.21 ppm and In 0.05 ppm and represents very low levels for these elements. The concentration of most of the elements is below the natural average content of the earth, and falls within normal ranges as follows for: U (1.43 ppm compared to 3.7 ppm), Th (6.07 ppm compared to 18 ppm), Sr (95.4 ppm compared to 125ppm), and Mo (1.27 ppm compared to 1.5ppm), etc.

All these results were obtained through comprehensive research programs conducted between 1997 and 2006. Samples were collected from the existing underground galleries, open pit benches, surface outcrop, and numerous surface and underground drill holes. The research program produced highly reliable and extremely detailed information about the Roșia Montană deposits.
the Questioner addresses the following questions for which it requests an answer: Which is the reasoning for keeping the waste rock deposit while this will be processed after the pits’ mining ends?

Proposal

Processing Roşia Montană’s low-grade ore will, in fact, be profitable. Ultimately, the processing of low-grade ore will yield approximately 20.4 t of gold and 142 t of silver.

In the first six years of the project, 29 million tones of material (or approximately 9% of the total quantity of mined and processed ore) with an average content of 0.9 g/t gold and 5 g/t silver will be removed from the Cetate and Cârnic pits and stockpiled.

Stockpiling ore, specifically lower-grade ore, is a common practice in mining (for details, see EU Code for report on mineral resources and reserves, October 2002). By processing material with richer content in the first years of mine operation and storing the lower grade material, larger quantities of gold and silver can be extracted in the first several years, enabling higher incomes, the quicker repayment of bank loans, and a lowering of the amounts paid in interest.

Lower interest means that the operation can generate greater profits more quickly, thus ensuring that a larger quantity of lower-grade ore can be processed in the future. This leads to a longer mine life, more taxes paid to the Romanian government, more resources from a lower economic cut-off grade and more jobs.

The independent review of the development plan of Newmont mine (at that time the biggest gold producer in the world) confirmed that the use of stockpiles for low-grade ore would be the best method to work the deposit. Also, the independent auditing of the mine by a group of specialists – experts employed by important banks – confirmed that keeping low grade ore stockpiles is the best way to work the deposit.

As there is no difference between the investment and operation costs by using the exploitation method with the storage of low grade ore (the stockpile does not require the purchase of equipment as all equipment and devices have already been purchased for the mining activities) not storing the low grade ore leads to spending the same amount of money but for less ore. This entails a higher cost per ton of ore and leads to higher edge contents for reserves, resulting in a lower production of gold and silver and a smaller lifetime for the mine. The global content of gold is higher and the per ton production cost increases. The quantity of wastes increases also. This leads to an increase of per ton cost for mined and processed ore, as there is more “barren material” to be drilled, unrocked, transported and stored.

By storing the low-grade ore and processing it later at the end of the pit exploitation without extra investment costs and without costs for drilling and blasting (exploitation costs), the extra quantity of low grade ore prove to be profitable, financially speaking. The only cost is the running cost of the processing plant which has already been amortized.
Processing Roşia Montană’s low-grade ore will, in fact, be profitable. Ultimately, the processing of low-grade ore will yield approximately 20.4 t of gold and 142 t of silver.

In the first six years of the project, 29 million tones of material (or approximately 9% of the total quantity of drilled and processed ore) with an average content of 0.9 g/t gold and 5 g/t silver will be removed from the Cetate and Cârnic pits and stockpiled.

Stockpiling ore, specifically lower-grade ore, is a common practice in mining (for details, see EU Code for report on mineral resources and reserves, October 2002). By processing material with richer content in the first years of mine operation and storing the lower grade material, larger quantities of gold and silver can be extracted in the first several years, enabling higher incomes, the quicker repayment of bank loans, and a lowering of the amounts paid in interest.

Lower interest means that the operation can generate greater profits more quickly, thus ensuring that a larger quantity of lower-grade ore can be processed in the future. This leads to a longer mine life, more taxes paid to the Romanian government, more reserves from a lower cut-off grade and more jobs.

By storing the low-grade ore and processing it later at the end of the pit exploitation without extra investment costs and without costs for drilling and blasting (exploitation costs), the extra quantity of low grade ore prove to be profitable, financially speaking. The only cost is the running cost of the processing plant which has already been amortized.
Domain: GEOLOGY

MMDD's item no. for the question which includes the observation identified by the RMGC internal code: 912

MMDD's identification no. for the question which includes the observation identified by the RMGC internal code: No. 110063/22.08.2006 and No. 75189/23.08.2006

RMGC internal unique code: MMGA_1575

Proposal: The status of the underground voids and the rehabilitation procedure in case of accident.

The underground voids, which were caused by previous mining and exploration, have been totally mapped, counted, modeled and introduced into a three dimensional model that allows the tracking and monitoring of them during the mining process. There are several types of voids. The most numerous are the old exploitation voids (so called "coranda"), and the more recent voids (the "room and pillars" type) and also voids generated by underground access and exploration workings. In total, the holes represent approximately 0.4% of the total volume of the Roșia Montană deposit. The position of the holes is known in detail: they are topographic surveyed and located on the mining plans. When mine works reach areas with holes, special precautions will be taken in blasting, loading and transport. For example, workers will blast smaller portions of ore, use smaller capacity equipment, evacuate the personnel from the area.

The existence of underground holes under the open pit benches can cause the working area to cave in when unexpectedly large quantities of rock break off. Such an accident is highly unlikely if the aforementioned procedures and technologies are strictly observed and utilized. In the unlikely event of an accident, the following might occur:

- Human accidents in the working area;
- Damage to mining equipment and likely incidental leak of fuel on the ground;
- Damage to pipes or power cables located in or near the affected area;
- Caving in of access ways, which would stop ore extraction work until they could be rebuilt.

Were an accident to occur, all personnel would be evacuated from the affected area and the mine management and competent authorities would be contact immediately. If there were injuries, first aid would be administered and personnel would be transported to receive medical attention. There would also be an initial investigation into the incident to determine whether further preventative actions (i.e. stabilizing the area, reestablishing water management structures, or extra monitoring precautions) were necessary. Were an accident to result in an emergency, all appropriate emergency actions would be taken.