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METAL SIMULATIONS DURING A POTENTIAL TMF SPILL 
 

The water in the TMF will contain metals of varying concentration and this has been discussed in the 
Project EIA reports and one aspect of the project that is important is the potential impact of these 
metals on the rivers downstream in the event of a TMF spill. Table 1 shows a list of the key metals 
and compares the TMF concentrations against the surface water standards. As can be seen in the 
Table, most of the metals are below the standards and this is illustrated by the third column in the 
Table. Only sulphate, calcium , arsenic and molybdenum are above the standard. (Cyanide has been 
extensively evaluated and is reported elsewhere). 
 

Table 1 Metal Standards and Predicted Concentrations in the TMF 
 

 

Romanian surface 
water standard 

mg/l 
TMF concentration 

mg/l Multiples of Standard 
Sulphate  600 2562 4.3 
Cyanide Total 0.1 3.2 32.0 
Arsenic 0.1 0.2 2.0 
Calcium 300.6 594 2.0 
Lead 0.2 0.1 0.5 
Cadmium 0.2 0.1 0.5 
Cromium 1 0.2 0.2 
Iron Total 5 0.9 0.2 
Copper 0.1 0.1 1.0 
Nickel 0.5 0.3 0.6 
Zinc 0.5 0.2 0.4 
Mercury 0.05 0.01 0.2 
Molybdenum 0.1 0.4 4.0 
Manganese 1 0.5 0.5 
Magnesium 100 9.4 0.1 
Cobalt 1 0.5 0.5 

 
In order to assess the impacts of metal release in the event of a TMF failure, a simulation of the 4 
metals that exceed the standards has been undertaken. The model used has been developed by 
Professor Steve Chapra and has already been applied to the simulatate cyanide transport down the 
river system. A brief description of the model is given in appendix 1 and a full description of the 
model and its application to the Aries and Mures River System  is given by in the Annex reprort and 
by Chapra and Whitehead (2009). 

 
The Chapra Dispersion model has been used to simulate the metal release from the TMF during a 
pollution event. The event assumes a total discharge of 26000 cubic metres of flow with the TMF 
concentrations of 0.2 mg/l of arsenic (As), 0.4 mg/l of Molybdenum (Mo), 2562 mg/l of sulphate and 
594mg/l of calcium. These are the maximum concentrations expected in the TMF prior to any 
potential TMF failure. It is also assumes that a worse case situation downstream whereby that there is 
no decay or loss of metal by precipitation or sedimentation.  It is also assumed that there are two 
extreme flow condition; firstly when the river flows are low such as in a summer drought or in a 
winter low flow period and secondly when the river is in spate at high flow conditions. The river 
system has been set up in the model to simulated the full 595 kms of river from The TMF at Rosia 
down to the Hungarian border. A full description of all the river ststem set up is given in previous 
reports (Whitehead, 2007) and in Whtehead et al (2009). 
 
 



Arsenic Simulation 
 
The simulation results using the Chapra model are given high flow conditions in Figure 1 and Table 1, 
and the low flow simulation results are given in Figure 2 and Table 2.  The results reveal that during 
high flow conditions there is massive dilution and the pulse of metal rich water rapidly becomes 
diluted and immediately fall below the Water Standard concentration of 0.1 mg/l. The simulation 
shows the dispersion effects coupled with the dilution effects as tributuaries join the main river 
system. The worse case situation is considered here in that it is assumed that there is no precipitation 
of the metal or sedimentation and that all the metal is held suspended or dissolved in the water 
column. In the case of the extreme low flow conditions, as shown in Figure 2 and Table 2, the 
concentrations also fall away rapidly and the dispersion and dilution have a significant effect over the 
22 days of travel time down the river system. Again the concentrations fall to well below the Water 
Standard. 
 

Figure 1 Simulated Arsenic (As) concentrations at key locations along the river system under high 
flow conditions following the simulated pollution spill 

 
 

Table 1 Simulated Arsenic (As) concentrations at key locations along the river system under high 
flow conditions following the simulated pollution spill 

 

Station 
Time 
days 

As 
concentration 

mg/l 
Abrud 0.132 0.00036 
campeni 1.012 0.00019 
Baia de Aries 1.038 0.00013 
turda 1.162 0.00009 
ocna mures 1.316 0.00006 
albalulia 1.716 0.00004 
deva 2.296 0.00004 
savirsin 3.121 0.00004 
arad 3.413 0.00004 
nadlac 3.665 0.00004 

 



 
Figure 2 Simulated Arsenic (As) concentrations at key locations along the river system under low 

flow conditions following the simulated pollution spill 
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Table 2 Simulated Arsenic (As) concentrations at key locations along the river system under low flow 
conditions following the simulated pollution spill 

 

Station 
Time  
days 

As Peak 
Concentration 

mg/l 
 
Abrud 1.002 0.06773 
campeni 1.080 0.03634 
Baia de Aries 1.502 0.02242 
turda 3.922 0.00712 
ocna mures 6.561 0.00245 
albalulia 11.062 0.00126 
deva 14.885 0.00086 
savirsin 19.503 0.00066 
arad 21.074 0.00059 
nadlac 22.404 0.00054 

 
 

 
 
 
 
 

 
 
 



Molybdenum Simulation 
 
In the case of molybdenum,  the simulation results are similar to the arsenic results, as shown in 
Figure 3 and Table 3, for the high flow condition, and in Figure 4 and Table 4, for the low flow 
condition. Again during high flow conditions there is massive dilution and the pulse of metal rich 
water rapidly becomes diluted and immediately fall below the Water Standard concentration of 0.1 
mg/l. In the case of the low flow conditions, as shown in Figure 4 and Table 4, the concentrations also 
fall away rapidly and the concentration fall well below the Water Standard. 

 
Figure 3 Simulated Molybdenum (Mo) concentrations at key locations along the river system under 

high flow conditions following the simulated pollution spill 
 

 
 
 

Table 3 Simulated Molybdenum (Mo) concentrations at key locations along the river system under 
high flow conditions following the simulated pollution spill 

 

Station 
Time 
days 

Mo 
concentration 

mg/l 
Abrud 0.132 0.00072 
campeni 1.012 0.00037 
Baia de Aries 1.038 0.00026 
turda 1.162 0.00019 
ocna mures 1.316 0.00012 
albalulia 1.716 0.00009 
deva 2.296 0.00008 
savirsin 3.121 0.00008 
arad 3.413 0.00008 
nadlac 3.665 0.00008 

 
 
 
 



Figure 4 Simulated Molybdenum (Mo) concentrations at key locations along the river system under 
low flow conditions following the simulated pollution spill 
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Table 4 Simulated Molybdenum (Mo) concentrations at key locations along the river system under 
low flow conditions following the simulated pollution spill 

 

Station 
Time 
days 

Mo Peak 
Concentration 

mg/l 
Abrud 1.003 0.135 
campeni 1.080 0.073 
Baia de Aries 1.502 0.045 
turda 3.923 0.014 
ocna mures 6.561 0.005 
albalulia 11.062 0.003 
Deva 14.886 0.002 
savirsin 19.504 0.001 
arad 21.074 0.001 
nadlac 22.404 0.001 

 
 
 
 
 
 
 



Sulphate Simulation 
 
In the case of sulphate,  the simulation results are similar to the other metal simulations with reduced 
concentrations for both high flow and low flow conditions. as shown in Figures 5 and 6 and in Tables 
5 and 6. During high flow conditions the dilution  reduces the pulse of sulphate rich water rapidly to 
below the Water Standard concentration of 600mg/l. In the case of the low flow conditions, as shown 
in Figure 6 and Table 6, the concentrations also fall away rapidly to well below the Water Standard. 
 

Figure 5 Simulated Sulphate concentrations at key locations along the river system under high flow 
conditions following the simulated pollution spill 

 

 
 

Table 5 Simulated peak sulphate concentrations at key locations along the river system under high 
flow conditions following the simulated pollution spill 

Station 
Time 
days 

Sulphate Peak 
Concentration 

mg/l 
Abrud 0.136 4.30
campeni 0.223 2.38
Baia de Aries 1.039 1.68
turda 1.162 1.19
ocna mures 1.318 0.75
albalulia 1.716 0.55
deva 2.296 0.53
savirsin 3.121 0.53
arad 3.413 0.52
nadlac 3.665 0.51

 



 
 
 
 

Figure 6 Simulated Sulphate concentrations at key locations along the river system under low flow 
conditions following the simulated pollution spill 
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Table 6 Simulated peak sulphate concentrations at key locations along the river system under low 

flow conditions following the simulated pollution spill 
 
 

Station 
Time 
days 

Sulphate Peak 
Concentration 

mg/l 
Abrud 1.0 750.6 
campeni 1.1 465.5 
Baia de Aries 1.5 287.2 
turda 3.9 91.2 
ocna mures 6.6 31.4 
albalulia 11.1 16.1 
deva 14.9 11.0 
savirsin 19.5 8.5 
arad 21.1 7.5 
nadlac 22.4 6.9 

 
 
 

 



Calcium Simulation 
 
In the case of calcium, the simulation results are similar to the sulphate simulations with reduced 
concentrations for both high flow and low flow conditions. as shown in Figures 7 and 8 and in Tables 
7 and 8. During high flow conditions the dilution and dispersion rapidly reduce the pulse of calcium 
to well below the Water Standard concentration of 300 mg/l. In the case of the low flow conditions, as 
shown in Figure 8 and Table 8, the concentrations also fall away rapidly to concentrations 
significantly below the Water Standard. 
 

Figure 7 Simulated calcium concentrations at key locations along the river system under high flow 
conditions following the simulated pollution spill 

 

 
 

Table 7 Simulated peak cacium concentrations at key locations along the river system under high flow 
conditions following the simulated pollution spill 

Station 
Time 
days 

Calciume Peak 
Concentration 

mg/l 
Abrud 0.136 1.00 
campeni 0.223 0.55 
Baia de Aries 1.039 0.39 
turda 1.162 0.28 
ocna mures 1.318 0.17 
albalulia 1.716 0.13 
deva 2.296 0.12 
savirsin 3.121 0.12 
arad 3.413 0.12 
nadlac 3.665 0.12 



Figure 8 Simulated calcium concentrations at key locations along the river system under low flow 
conditions following the simulated pollution spill 
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Table 8 Simulated peak calcium concentrations at key locations along the river system under low flow 

conditions following the simulated pollution spill 
 
 

Station 
Time 
days 

Calcium Peak 
Concentration 

mg/l 
Abrud 1.0 171.1 
campeni 1.1 107.9 
Baia de Aries 1.5 66.6 
turda 3.9 21.1 
ocna mures 6.6 7.3 
albalulia 11.1 3.7 
deva 14.9 2.6 
savirsin 19.5 2.0 
arad 21.1 1.8 
nadlac 22.4 1.6 

 
CONCLUSIONS 
 
This simulation study has illustrated that metal releases in the event of a TMF failure will fall rapidly 
to below the Water Standards due to the dilution and dispersion processes operating down the river 
system. 

 



 
APPENDIX 1    DISPERSION MODELLING OF POLLUTANT SPILLS 
 
A new model has been developed to numerically simulate the transport and fate of a river contaminant 
spill. The model is based on the classical dispersion equation (Fischer 1968) but also incorporates the 
dilution effects of tributaries joining the main river as well as any chemical decay processes occurring 
in the river system. The model assumes that lateral and vertical gradients are minimal and that the 
contaminant can decay with first-order kinetics. The general nature of this model is particularly useful 
as it would be possible to apply the model to any pollutant that has first-order chemical decay or 
kinetics and almost any river system which is subject to lateral inflows of water that give rise to the 
dilution effect. The model could therefore be used for radioactive discharges, pesticides, E. coli and 
any pollutant that can be approximately represented as a simple chemical decay. 
 
In river systems, where there is significant turbulence and mixing, the loss of material by 
sedimentation or chemical decay can be represented by first-order kinetics dependent on temperature, 
concentration and river residence time. This kinetic approach to modelling metals and pollutants has 
been used successfully in the Wheal Jane Mine study by Whitehead et al. (2005b) and this is the 
approach adopted for the modelling of the metals in the current study. 
 
The new model described below has been applied to the Aries and Mures River Systems in Romania, 
as shown in figures 1 and 2 and a full description of the model is given in the annex report and by 
Chapra and Whitehead (2009). The river set up and reach structure is also given both in the annex 
report and in Whitehead et al (2009) 
 
 
Segmentation 
In order to derive a numerical solution the river is divided into a series of reaches, as shown in 
Figure 3. These reaches represent river segments that have constant hydrogeometric characteristics 
but the reaches can be of different lengths. The reaches themselves are further divided into a series of 
equal length computational elements. The elements represent the fundamental units for which water 
and mass balances are written and solved. 
 
In summary, the nomenclature used to describe the way in which the spill model organizes river 
topology is as follows. 
• Reach: a length of river with constant hydraulic characteristics. 
• Element: the model’s fundamental computational unit which consists of an equal length 
subdivision of a reach. 
 
Initial flow balance 
A steady-state flow balance is implemented for each model element. For the first element in a reach, 
the budget is written as (see Figure 4): 

iii QQQ ,in1 += −      (1) 
where Qi = outflow from element i into the downstream element i + 1 (m3 s–1), Qi–1 = inflow from the 
upstream element i – 1 (m3 s–1), and Qin,i is the incremental inflow into the element from point and 
non-point sources along the length of the reach (m3 s–1). Thus, the downstream outflow of the first 
element is simply the sum of the inflow from upstream and the incremental flow. For the other 
elements of the reach Qin,i = 0 and, therefore, outflow equals inflow i.e. Qi = Qi–1.  
 
Depth, velocity and other hydraulic parameters 
Once the outflow for each element is computed, the depth Hi (m) and velocity Ui (m s–1), are 
calculated in one of two ways: rating curves and the Manning equation.  



 
Rating curves. Rating curves in the form of power equations are used to relate mean velocity and 
depth to flow for each element: 

b
ii aQU =      (2) 
βα ii QH =      (3) 

where Ui = the mean velocity across the downstream interface of element i (m s–1), Hi = the average 
depth of element i (m) and a, b, α and β are empirical coefficients that are determined from velocity–
discharge and stage–discharge rating curves, respectively. Note that the sum of b and β must be less 
than or equal to 1. If this is not the case, the width will decrease with increasing flow. If their sum 
equals 1, the channel is rectangular. 
 
After the velocity and depth of an element are computed with Equations (2) and (3), they can be used 
to compute other required hydrogeometric characteristics. For example, the velocity can be 
substituted into the continuity equation (Qi = Ui Ac,i) to determine the element’s cross-sectional area 
(m2): 

, .i
c i

i

QA
U

=      (4) 

The area can be directly related to flow by substituting Equation (2) into Equation (4) to give 
1

,
1 .bi

c i ib
i

QA
aQ a

−= = Q      (5) 

The element’s mean width B (m), wetted perimeter P (m) and volume V (m3) follow 

i

ic
i H

A
B ,=      (6) 

iii HBP 2+=      (7) 
iiii xHBV Δ=      (8) 

where Δxi = the element length (m).  
 
Besides computing the hydrogeometric characteristics as a function of flow, the rating curves can also 
be employed to perform the inverse calculation. That is, given volume, they can also be used to 
compute flow, depth, velocity, area, width and wetted perimeter. Because Δx is known, we first 
determine the cross-sectional area as: 

i

i
ic x

VA
Δ

=,      (9) 

Flow can then be evaluated by solving Equation (5) for 
1/(1 ) 1/(1 ) .b

i cQ a A− −= b     (10) 
Once flow is known, Equations (2), (3), (6) and (7) can be then employed to compute Ui, Hi, Bi, and 
Pi. 
 
Manning equation 
Each element in a particular reach is idealized as a trapezoidal channel (Figure 5). For such channels, 
the Manning equation can be used to express the relationship between flow and depth as 

3/2

3/5
,

2/1
,0

i

ic

i

i
i P

A
n

S
Q =      (11) 

where S0,i = bottom slope (m m–1), ni = the Manning roughness coefficient, Ac,i = the cross-sectional 
area (m2) and Pi = the wetted perimeter (m). 
 
The cross-sectional area and wetted perimeter are computed as 



( ) iiiiic HHsBA += ,0,     (12) 

12 2
,0 ++= iiii sHBP     (13) 

where B0,i = bottom width (m) and si = the side slope as shown in Figure 5 (m m–1). Substituting 
Equations (12) and (13) into (11) gives 
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Given values for Q, B0, S0, n and s, Equation (14) is a nonlinear equation with one unknown H which 
can be reformulated as 
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The root (i.e. the value of depth that makes this equation zero) is the reach depth. It can be shown that 
the root can be determined efficiently by successive substitution (Chapra & Canale 2006) using the 
iterative formula: 
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where k = 1, 2, …, n, where n = the number of iterations. If an initial guess of Hi,0 = 0 is employed, 
this approach is rapidly convergent for all natural channels (Chapra & Canale 2006). The method is 
terminated when the estimated error falls below a specified value of 0.001%. The estimated error is 
calculated as 

%100
1,

,1,
, ×

−
=

+

+

ki

kiki
ia H

HH
ε    (17) 

 
Once the depth is known, the cross-sectional area and wetted perimeter are computed with Equations 
(12) and (13), and the velocity can be determined from the continuity equation: 

ic
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i A

QU
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The average element width, Bi (m) is then computed as  

, ,c i
i

i

A
B

H
=      (19) 

the top width, B1,i (m) as  
iiii HsBB 2,0,1 +=     (20) 

and the element volume as 
.i i iV B H x= Δ i      (21) 

 
As was the case with the rating curves, the Manning approach can also be employed to perform the 
inverse calculation. If the volume is given, the cross-sectional area can be generated with Equation 
(9). The depth is determined by reformulating Equation (12) as a quadratic, i.e. 

2
0, , 0.i i i i c is H B H A+ − =     (22) 

The positive root of this equation yields the depth (note that this version of the quadratic formula 
prevents division by zero for rectangular channels i.e. with si = 0): 
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The average width and flow are computed with Equations (19) and (14), respectively, and the velocity 
then follows from Equation (18). 
 
Dynamic water balance 
After the initial volumes are determined, the software generates a numerical solution of the one-
dimensional continuity equation: 

x
Q

t
Ac

∂
∂

∂
∂

−=      (24) 

Equation (24) can be expressed in numerical form by writing a water balance around each element to 
give 

iii
i QQQ

dt
dV

−+= − in,1     (25) 

where Qi is the outflow which is computed as described previously. Equation (25) is then integrated 
numerically to obtain the element volumes as a function of time. 
 
Dispersion 
Dispersion can either be user-prescribed or computed. In the latter case, based on Rutherford’s (1994) 
assessment, three empirically-derived equations are available to compute the longitudinal dispersion 
for the downstream boundary between two elements. 
 
According to Fischer et al. (1979), 

*

22

, 011.0
ii

ii
ip UH

BU
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where Ep,i = the longitudinal dispersion between elements i and i + 1 (m2 s–1) and Ui = mean velocity 
of element i (m s–1), Bi = mean width (m), Hi = depth (m) and Ui* = shear velocity (m s–1), which is 
related to more fundamental characteristics by 

iii SgHU ,0
* =      (27) 

where g = acceleration due to gravity (= 9.81 m s–2) and S0,i = bottom slope (m m–1). 
 
According to Liu (1977), 
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where Rh = the hydraulic radius (m), equal to the ratio of the cross-sectional area to the wetted 
perimeter.  
 
According to McQuivey and Keefer (1974), 

, 0.058 .i
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QE
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This formulation is limited to systems with Froude numbers )/( gHUF =  less than 0.5. If this 
constraint is exceeded, the software automatically displays an error message and terminates. 
 
Mass balance 
The software generates a numerical solution of the one-dimensional advection-dispersion-reaction 
equation: 
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where c = concentration (mg l–1), t = time (s), U = velocity (m s–1), x = distance (m), E = dispersion 
(m2 s–1) and k = first-order decay rate (d–1). 
 
Equation (30) can be expressed in numerical form by writing a mass balance around each element, as 
shown in Figure 6. In order to account for the non-uniformity, as well as to conserve mass, the fluxes 
between elements are specified at their upstream and downstream faces to give: 
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where Mi = the mass of pollutant in element i (g) = Vi ci. 
 
Assuming that the concentrations at each interface are equal to the upstream element (i.e. a backward 
or ‘upstream’ difference), and using centred differences for the gradients, yields: 
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where W(t) = mass loading rate (g s–1), Qj,k = the flow from element j into element k (m3 s–1), Ej,k = the 
dispersion between elements j and k (m2 s–1) and Δxj,k = the length between the mid-points of elements 
j and k (m): 

2,
kj
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xx
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Δ+Δ
=Δ     (33) 

where Δxi = the length of element i (m). This equation can then be written for all the elements and 
integrated numerically to obtain the solution. 
 
Solution method 
Equations (25) and (32) are solved numerically with Euler’s method as follows: 

1. Determine and save the initial values for all elements. 
2. Compute derivatives with Equations (25) and (33). 
3. Compute new volumes and masses with Euler’s method: 

t
dt

tdVtVttV i
ii Δ+=Δ+

)()()(  

t
dt

tdMtMttM i
ii Δ+=Δ+

)()()(  

4. Compute new outflows for each element as a function of their new volumes. 
5. Compute other hydraulic parameters. 
6. Compute new concentrations: ci = Mi/Vi. 
7. Increment time: t = t + Δt. 
8. Save new values. If t ≥ final time, exit to Step 10. 
9. Loop back to Step 2. 
10. Display results. 

 
In the absence of numerical dispersion, the foregoing hydraulic solution is similar to the kinematic 
wave. However, because of the use of first-order forward time differencing and backward space 
differencing, it does exhibit numerical dispersion and hence is more akin to a diffusive wave solution. 
Techniques such as the Muskingum-Cunge method attempt to mitigate such effects; the solution time-
step is selected in order that the numerical dispersion approximates the actual diffusion exhibited by 
waves subject to gravity effects. 
 



In a similar fashion, the mass solution also generates additional numerical dispersion. As with the 
hydraulics, a time-step can be chosen in an attempt to match the numerical dispersion to the actual 
dispersion.  
 
Unfortunately, different time-steps are needed for the hydraulic and mass solutions. Further, because 
the system being studied has a wide range of flows and velocities, the optimal time-step will vary 
greatly. The following scheme attempts to minimize the impact of both effects while using a single 
time-step. 
 
For the mass solution, the total dispersion generated consists of the model dispersion, Ei, along with 
some additional numerical dispersion, En,i. Since we would like the solution to have the correct 
physical dispersion (i.e. either user-specified or computed with Equations (26)–(29)) Ep,i, we therefore 
desire that 

, .p i i n iE E E= + ,

tΔ

     (34) 
 
A Taylor series expansion (Chapra 1997) can be used to relate the numerical dispersion to the space 
and time-steps as 

2
, 0.5 0.5 .n i i i iE U x U= Δ −     (35) 

Substituting Equation (35) into (34) and rearranging yields 
2

, 0.5 0.5 .i p i i i iE E U x U= − Δ + Δt     (36) 
Therefore, to achieve accuracy, the dispersion used in the model Ei is automatically set equal to the 
desired dispersion: Ep,i minus the numerical dispersion En,i. 
 
There are two stability constraints. First, a spatial positivity constraint can be formulated as 

2 .i
i

i

Ex
U

Δ <      (37) 

This constraint guarantees positive solutions. 
 
In addition, the time-step is constrained according to  

 2

2

2 iiii

i

xkExU
xt

Δ++Δ
Δ

<Δ    (38) 

where the right-hand side is the element’s residence time (s). This is the analogue of the Courant 
condition for Equation (32). These criteria can be used to develop a solution procedure that 
maximizes accuracy and guarantees stability as described next. First, the user specifies the maximum 
desired size of the element length for each reach. Then, Equation (37) is used to determine the 
maximum permissible size based on the velocity and the dispersion, i.e. using Ei = Ep,i. If the desired 
size is greater than the permissible size, the element length is set to the permissible size. Otherwise, 
the element length is set to the maximum desired size. The resulting element length is then divided 
into the reach length and the result rounded up in order to determine the number of elements for each 
reach. Second, Equation (38) is used to determine a maximum allowable time-step for each reach. The 
minimum of these time-steps is then taken as the computational time-step for the entire system. 
Finally, this time-step along with the element size is substituted into Equation (35) to compute the 
numerical dispersion. If it is less than the physical dispersion, Equation (36) is used to compute the 
dispersion coefficient that should be input to the model. 
 
 
A full description of the model and its application is given in the annex report and by Chapra and 
Whitehead (2009). The river set up and reach structure is also given both in the annex report and in 
Whitehead et al (2009) 
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Figure 1 | Romania and the location of Roşia Montană 

 
 

Figure 2  The Mures River basin, key locations and sub-catchments 
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Figure 3 Spill model segmentation scheme showing reaches divided into equal-sized computational 
elements (the system’s external flows are also depicted) 
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Figure 4 Flow balance for the first element in a reach 
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Figure 5 A cross-section of a trapezoidal channel showing the parameters needed to uniquely define 
the geometry: B0 = bottom width, s = side slope 

Figure 6 
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Figure 6 One-dimensional channel divided into a series of elements 
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